Microbial iron metabolism in natural environments

نویسنده

  • Marianne Erbs
چکیده

The aim of this project was to assess the diversity of iron metabolizing bacteria in several ecological niches by culture-dependent and culture-independent methods. In particular, we wanted to determine whether non-phototrophic, anaerobic nitrate-dependent Fe(II)-oxidizers coexist with aerobic Fe(1I)-oxidizers and facultatively anaerobic Fe(III)-reducers in natural habitats. To this end, we sampled iron-rich sites in freshwater, estuarine and marine environments and enriched for non-phototrophic anaerobic and aerobic Fe(II)-oxidizers. The identification of the two environmentally most important facultatively anaerobic Fe(III) reducers and one aerobic heterotrophic Fe(II)-oxidizer in the sediment samples was carried out by means of fluorescent in situ hybridization (FISH). We were able to culture aerobic Fe(II) oxidizers in gradient tubes from each sample site. Nitrate-reducing Fe(TI)-oxidizers were only found in sediments from a Cranberry Bog. Geobacter, S’hewanella and Leptothrix coexist in Salt Pond at the oxic/anoxic interface. Microbial iron metabolism in natural environments Marianne Erbs & Jim Spain Introduction The significance of bacteria in the biogeochemical cycling of iron has been broadly recognized over the past two decades. In Fig. 1 the role of dissimilatory anaerobic Fe(III)-reducers as well as acidophilic and neutrophilic aerobic Fe(II)-oxidizers, anaerobic phototrophic Fe(II)-oxidizers and facultatively anaerobic nitrate-reducing Fe(11)-oxidizers in the microbial cycling of iron is shown. Microbial iron cycling

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the Global Ocean Sampling (GOS) Project for Trends in Iron Uptake by Surface Ocean Microbes

Microbial metagenomes are DNA samples of the most abundant, and therefore most successful organisms at the sampling time and location for a given cell size range. The study of microbial communities via their DNA content has revolutionized our understanding of microbial ecology and evolution. Iron availability is a critical resource that limits microbial communities' growth in many oceanic areas...

متن کامل

Abundance, distribution, and activity of Fe(II)-oxidizing and Fe(III)-reducing microorganisms in hypersaline sediments of Lake Kasin, southern Russia.

The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied th...

متن کامل

Iron metabolism in anoxic environments at near neutral pH.

Anaerobic dissimilatory ferric iron-reducing and ferrous iron-oxidizing bacteria gain energy through reduction or oxidation of iron minerals and presumably play an important role in catalyzing iron transformations in anoxic environments. Numerous ferric iron-reducing bacteria have been isolated from a great diversity of anoxic environments, including sediments, soils, deep terrestrial subsurfac...

متن کامل

Development and evaluation of 50-mer oligonucleotide arrays for detecting microbial populations in Acid Mine Drainages and bioleaching systems.

To effectively monitor microbial populations in acidic environments and bioleaching systems, a comprehensive 50-mer-based oligonucleotide microarray was developed based on most of the known genes associated with the acidophiles. This array contained 1,072 probes in which there were 571 related to 16S rRNA and 501 related to functional genes. The functional genes in the microarray were involved ...

متن کامل

Microbial extracellular electron transfer and its relevance to iron corrosion.

Extracellular electron transfer (EET) is a microbial metabolism that enables efficient electron transfer between microbial cells and extracellular solid materials. Microorganisms harbouring EET abilities have received considerable attention for their various biotechnological applications, including bioleaching and bioelectrochemical systems. On the other hand, recent research revealed that micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012